Odd Harmonious Labeling of plus Graphs

نویسنده

  • P. Jeyanthi
چکیده

A graph G(p, q) is said to be odd harmonious if there exists an injection f : V (G) → {0, 1, 2, · · · , 2q − 1} such that the induced function f∗ : E(G) → {1, 3, · · · , 2q − 1} defined by f∗(uv) = f(u) + f(v) is a bijection. In this paper we prove that the plus graph Pln , open star of plus graph S(t.P ln), path union of plus graph Pln, joining of Cm and plus graph Pln with a path, one point union of path of plus graph P t n(t.n.P ln) are odd harmonious graphs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Harmonious Labelings of Some Cycle Related Graphs

A graph G(p, q) is said to be odd harmonious if there exists an injection f : V (G)→ {0, 1, 2, · · · , 2q − 1} such that the induced function f∗ : E(G) → {1, 3, · · · , 2q − 1} defined by f∗(uv) = f(u) + f(v) is a bijection. A graph that admits odd harmonious labeling is called odd harmonious graph. In this paper we prove that any two even cycles sharing a common vertex and a common edge are od...

متن کامل

Skolem Odd Difference Mean Graphs

In this paper we define a new labeling called skolem odd difference mean labeling and investigate skolem odd difference meanness of some standard graphs. Let G = (V,E) be a graph with p vertices and q edges. G is said be skolem odd difference mean if there exists a function f : V (G) → {0, 1, 2, 3, . . . , p + 3q − 3} satisfying f is 1−1 and the induced map f : E(G) → {1, 3, 5, . . . , 2q−1} de...

متن کامل

Further results on odd mean labeling of some subdivision graphs

Let G(V,E) be a graph with p vertices and q edges. A graph G is said to have an odd mean labeling if there exists a function f : V (G) → {0, 1, 2,...,2q - 1} satisfying f is 1 - 1 and the induced map f* : E(G) → {1, 3, 5,...,2q - 1} defined by f*(uv) = (f(u) + f(v))/2 if f(u) + f(v) is evenf*(uv) = (f(u) + f(v) + 1)/2 if f(u) + f(v) is odd is a bijection. A graph that admits an odd mean labelin...

متن کامل

Odd Harmonious Labeling of Some New Families of Graphs

A graph G(p, q) is said to be odd harmonious if there exists an injection f : V (G) → {0, 1, 2, · · · , 2q − 1} such that the induced function f∗ : E(G) → {1, 3, · · · , 2q − 1} defined by f∗(uv) = f(u) + f(v) is a bijection. A graph that admits odd harmonious labeling is called odd harmonious graph. In this paper, we prove that shadow and splitting of graph K2,n, Cn for n ≡ 0 (mod 4), the grap...

متن کامل

On Additive Bases and Harmonious Graphs

This paper first considers several types of additive bases. A typical problem is to find nv(k), the largest n for which there exists a set {0 al < a2 <" < ak} Of distinct integers modulo n such that each in the range 0 =<-< n can be written at least once as mai + aj (modulo n) with </'. For example, nv(8) 24, The other problems arise if at least is changed to at most, or </' to-</', or if the w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017